Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

Among image classification, skip and densely-connection-based networks have dominated most leaderboards. Recently, from the successful development of multi-head attention in natural language processing, it is sure that now is a time of either using a Transformer-like model or hybrid CNNs with attention. However, the former need a tremendous resource to train, and the latter is in the perfect balance in this direction. In this work, to make CNNs handle global and local information, we proposed UPANets, which equips channel-wise attention with a hybrid skip-densely-connection structure. Also, the extreme-connection structure makes UPANets robust with a smoother loss landscape. In experiments, UPANets surpassed most well-known and widely-used SOTAs with an accuracy of 96.47% in Cifar-10, 80.29% in Cifar-100, and 67.67% in Tiny Imagenet. Most importantly, these performances have high parameters efficiency and only trained in one customer-based GPU. We share implementing code of UPANets in https://github.com/hanktseng131415go/UPANets.

About the metric use case




Target sector(s):

Modify this use case

catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.