Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

Ideally we would like to obtain a more complete understanding of variable importance for the set of models that predict almost equally well. This set of almost-equally-accurate predictive models is called the Rashomon set; it is the set of models with training loss below a threshold. A variable importance cloud (VIC) is precisely the joint set of variable importance values for all models in the Rashomon set. Specifically, we define a vector for a single predictive model, each element representing the dependence of the model on a feature. The VIC is the set of such vectors for all models in the Rashomon set.
catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.