Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

Privacy in Machine Learning



An important aspect of responsible AI usage is ensuring that ML models are prevented from exposing potentially sensitive information, such as demographic information or other attributes in the training dataset that could be used to identify people. One way to achieve this is by using differentially private stochastic gradient descent (DP-SGD), which is a modification to the standard stochastic gradient descent (SGD) algorithm in machine learning.

Models trained with DP-SGD have measurable differential privacy (DP) improvements, which helps mitigate the risk of exposing sensitive training data. Since the purpose of DP is to help prevent individual data points from being identified, a model trained with DP should not be affected by any single training example in its training data set. DP-SGD techniques can also be used in federated learning to provide user-level differential privacy. You can learn more about differentially private deep learning in the original paper.

About the tool


Developing organisation(s):


Type of approach:



Programming languages:


Modify this tool

Use Cases

There is no use cases for this tool yet.

Would you like to submit a use case for this tool?

If you have used this tool, we would love to know more about your experience.

Add use case
catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.