Context-Guided Spatio-Temporal Video Grounding
We present DeepSeek-VL, an open-source Vision-Language (VL) Model designed
for real-world vision and language understanding applications. Our approach is
structured around three key dimensions:
We strive to ensure our data is diverse, scalable, and extensively covers
real-world scenarios including web screenshots, PDFs, OCR, charts, and
knowledge-based content, aiming for a comprehensive representation of practical
contexts. Further, we create a use case taxonomy from real user scenarios and
construct an instruction tuning dataset accordingly. The fine-tuning with this
dataset substantially improves the model's user experience in practical
applications. Considering efficiency and the demands of most real-world
scenarios, DeepSeek-VL incorporates a hybrid vision encoder that efficiently
processes high-resolution images (1024 x 1024), while maintaining a relatively
low computational overhead. This design choice ensures the model's ability to
capture critical semantic and detailed information across various visual tasks.
We posit that a proficient Vision-Language Model should, foremost, possess
strong language abilities. To ensure the preservation of LLM capabilities
during pretraining, we investigate an effective VL pretraining strategy by
integrating LLM training from the beginning and carefully managing the
competitive dynamics observed between vision and language modalities.
The DeepSeek-VL family (both 1.3B and 7B models) showcases superior user
experiences as a vision-language chatbot in real-world applications, achieving
state-of-the-art or competitive performance across a wide range of
visual-language benchmarks at the same model size while maintaining robust
performance on language-centric benchmarks. We have made both 1.3B and 7B
models publicly accessible to foster innovations based on this foundation
model.