Deep learning for time series classification
Time series analysis is a field of data science which is interested in
analyzing sequences of numerical values ordered in time. Time series are
particularly interesting because they allow us to visualize and understand the
evolution of a process over time. Their analysis can reveal trends,
relationships and similarities across the data. There exists numerous fields
containing data in the form of time series: health care (electrocardiogram,
blood sugar, etc.), activity recognition, remote sensing, finance (stock market
price), industry (sensors), etc. Time series classification consists of
constructing algorithms dedicated to automatically label time series data. The
sequential aspect of time series data requires the development of algorithms
that are able to harness this temporal property, thus making the existing
off-the-shelf machine learning models for traditional tabular data suboptimal
for solving the underlying task. In this context, deep learning has emerged in
recent years as one of the most effective methods for tackling the supervised
classification task, particularly in the field of computer vision. The main
objective of this thesis was to study and develop deep neural networks
specifically constructed for the classification of time series data. We thus
carried out the first large scale experimental study allowing us to compare the
existing deep methods and to position them compared other non-deep learning
based state-of-the-art methods. Subsequently, we made numerous contributions in
this area, notably in the context of transfer learning, data augmentation,
ensembling and adversarial attacks. Finally, we have also proposed a novel
architecture, based on the famous Inception network (Google), which ranks among
the most efficient to date.