Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

Few-shot learning (FSL) aims to recognize new objects with extremely limited training data for each category. Previous efforts are made by either leveraging meta-learning paradigm or novel principles in data augmentation to alleviate this extremely data-scarce problem. In contrast, this paper presents a simple statistical approach, dubbed Instance Credibility Inference (ICI) to exploit the distribution support of unlabeled instances for few-shot learning. Specifically, we first train a linear classifier with the labeled few-shot examples and use it to infer the pseudo-labels for the unlabeled data. To measure the credibility of each pseudo-labeled instance, we then propose to solve another linear regression hypothesis by increasing the sparsity of the incidental parameters and rank the pseudo-labeled instances with their sparsity degree. We select the most trustworthy pseudo-labeled instances alongside the labeled examples to re-train the linear classifier. This process is iterated until all the unlabeled samples are included in the expanded training set, i.e. the pseudo-label is converged for unlabeled data pool. Extensive experiments under two few-shot settings show that our simple approach can establish new state-of-the-arts on four widely used few-shot learning benchmark datasets including miniImageNet, tieredImageNet, CIFAR-FS, and CUB. Our code is available at: https://github.com/Yikai-Wang/ICI-FSL

About the metric use case


Objective(s):



Target sector(s):

Modify this use case

catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.