Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

Recently, it has attracted much attention to build reliable named entity recognition (NER) systems using limited annotated data. Nearly all existing works heavily rely on domain-specific resources, such as external lexicons and knowledge bases. However, such domain-specific resources are often not available, meanwhile it's difficult and expensive to construct the resources, which has become a key obstacle to wider adoption. To tackle the problem, in this work, we propose a novel robust and domain-adaptive approach RDANER for low-resource NER, which only uses cheap and easily obtainable resources. Extensive experiments on three benchmark datasets demonstrate that our approach achieves the best performance when only using cheap and easily obtainable resources, and delivers competitive results against state-of-the-art methods which use difficultly obtainable domainspecific resources. All our code and corpora can be found on https://github.com/houking-can/RDANER.

About the metric use case




Target sector(s):

Modify this use case

catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.