InverseForm: A Loss Function for Structured Boundary-Aware Segmentation
Foundational image-language models have generated considerable interest due
to their efficient adaptation to downstream tasks by prompt learning. Prompt
learning treats part of the language model input as trainable while freezing
the rest, and optimizes an Empirical Risk Minimization objective. However,
Empirical Risk Minimization is known to suffer from distributional shifts which
hurt generalizability to prompts unseen during training. By leveraging the
regularization ability of Bayesian methods, we frame prompt learning from the
Bayesian perspective and formulate it as a variational inference problem. Our
approach regularizes the prompt space, reduces overfitting to the seen prompts
and improves the prompt generalization on unseen prompts. Our framework is
implemented by modeling the input prompt space in a probabilistic manner, as an
a priori distribution which makes our proposal compatible with prompt learning
approaches that are unconditional or conditional on the image. We demonstrate
empirically on 15 benchmarks that Bayesian prompt learning provides an
appropriate coverage of the prompt space, prevents learning spurious features,
and exploits transferable invariant features. This results in better
generalization of unseen prompts, even across different datasets and domains.
Code available at: https://github.com/saic-fi/Bayesian-Prompt-Learning