Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

Video captioning is process of summarising the content, event and action of the video into a short textual form which can be helpful in many research areas such as video guided machine translation, video sentiment analysis and providing aid to needy individual. In this paper, a system description of the framework used for VATEX-2020 video captioning challenge is presented. We employ an encoder-decoder based approach in which the visual features of the video are encoded using 3D convolutional neural network (C3D) and in the decoding phase two Long Short Term Memory (LSTM) recurrent networks are used in which visual features and input captions are fused separately and final output is generated by performing element-wise product between the output of both LSTMs. Our model is able to achieve BLEU scores of 0.20 and 0.22 on public and private test data sets respectively.

About the metric use case




Target sector(s):

Modify this use case

catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.