Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

In this paper, we exploit the innate document segment structure for improving the extractive summarization task. We build two text segmentation models and find the most optimal strategy to introduce their output predictions in an extractive summarization model. Experimental results on a corpus of scientific articles show that extractive summarization benefits from using a highly accurate segmentation method. In particular, most of the improvement is in documents where the most relevant information is not at the beginning thus, we conclude that segmentation helps in reducing the lead bias problem.

About the metric use case


Objective(s):



Target sector(s):

Modify this use case

catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.