Roto-Translation Equivariant Convolutional Networks: Application to Histopathology Image Analysis
Rotation-invariance is a desired property of machine-learning models for
medical image analysis and in particular for computational pathology
applications. We propose a framework to encode the geometric structure of the
special Euclidean motion group SE(2) in convolutional networks to yield
translation and rotation equivariance via the introduction of SE(2)-group
convolution layers. This structure enables models to learn feature
representations with a discretized orientation dimension that guarantees that
their outputs are invariant under a discrete set of rotations. Conventional
approaches for rotation invariance rely mostly on data augmentation, but this
does not guarantee the robustness of the output when the input is rotated. At
that, trained conventional CNNs may require test-time rotation augmentation to
reach their full capability. This study is focused on histopathology image
analysis applications for which it is desirable that the arbitrary global
orientation information of the imaged tissues is not captured by the machine
learning models. The proposed framework is evaluated on three different
histopathology image analysis tasks (mitosis detection, nuclei segmentation and
tumor classification). We present a comparative analysis for each problem and
show that consistent increase of performances can be achieved when using the
proposed framework.