Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

Automatic evaluation of Machine Translation (MT) quality has been investigated over several decades. Spoken Language Translation (SLT), esp. when simultaneous, needs to consider additional criteria and does not have a standard evaluation procedure and a widely used toolkit. To fill the gap, we develop SLTev, an open-source tool for assessing SLT in a comprehensive way. SLTev reports the quality, latency, and stability of an SLT candidate output based on the time-stamped transcript and reference translation into a target language. For quality, we rely on sacreBLEU which provides MT evaluation measures such as chrF or BLEU. For latency, we propose two new scoring techniques. For stability, we extend the previously defined measures with a normalized Flicker in our work. We also propose a new averaging of older measures. A preliminary version of SLTev was used in the IWSLT 2020 shared task. Moreover, a growing collection of test datasets directly accessible by SLTev are provided for system evaluation comparable across papers.

About the metric use case


Modify this use case

catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.