Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

Automatic pulmonary nodules classification is significant for early diagnosis of lung cancers. Recently, deep learning techniques have enabled remarkable progress in this field. However, these deep models are typically of high computational complexity and work in a black-box manner. To combat these challenges, in this work, we aim to build an efficient and (partially) explainable classification model. Specially, we use \emph{neural architecture search} (NAS) to automatically search 3D network architectures with excellent accuracy/speed trade-off. Besides, we use the convolutional block attention module (CBAM) in the networks, which helps us understand the reasoning process. During training, we use A-Softmax loss to learn angularly discriminative representations. In the inference stage, we employ an ensemble of diverse neural networks to improve the prediction accuracy and robustness. We conduct extensive experiments on the LIDC-IDRI database. Compared with previous state-of-the-art, our model shows highly comparable performance by using less than 1/40 parameters. Besides, empirical study shows that the reasoning process of learned networks is in conformity with physicians' diagnosis. Related code and results have been released at: https://github.com/fei-hdu/NAS-Lung.

About the metric use case




Target sector(s):

Modify this use case

catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.