Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

The goal of privacy metrics is to measure the degree of privacy enjoyed by users in a system and the amount of protection offered by privacy-enhancing technologies. In this way, privacy metrics contribute to improving user privacy in the digital world. The diversity and complexity of privacy metrics in the literature makes an informed choice of metrics challenging. As a result, redundant new metrics are proposed frequently, and privacy studies are often incomparable. In this survey we alleviate these problems by structuring the landscape of privacy metrics. For this we explain and discuss a selection of over eighty privacy metrics and introduce a categorization based on the aspect of privacy they measure, their required inputs, and the type of data that needs protection. In addition, we present a method on how to choose privacy metrics based on eight questions that help identify the right privacy metrics for a given scenario, and highlight topics where additional work on privacy metrics is needed. Our survey spans multiple privacy domains and can be understood as a general framework for privacy measurement.

About the metric use case



Modify this use case

catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.