Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

Contextual Outlier INterpretation (COIN) is a method designed to explain the abnormality of existing outliers spotted by detectors. The interpretability for an outlier is achieved from three aspects: outlierness score, att that contribute to the abnormality, and contextual description of its neighborhoods.

About the metric




Lifecycle stage(s):


Target users:


Risk management stage(s):

Modify this metric

catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.