Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

The Surrogacy Efficacy Score is a technique for gaining a better understanding of the inner workings of complex "black box" models. For example, by using a Tree-based model, this method provides a more interpretable representation of the model’s behavior by partitioning the input data based on the values of certain fields and creating simple rules to approximate the model’s predictions. The Decision Tree model is trained to closely mimic the original model by minimizing the loss between the model’s predictions and surrogate model predictions. 

Please refer to the reference website to access the full formula.

catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.