Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

ISO/IEC 15938-17:2022 - Information technology. Multimedia content description interface. Part 17. Compression of neural networks for multimedia content description and analysis



This document specifies Neural Network Coding (NNC) as a compressed representation of the parameters/weights of a trained neural network and a decoding process for the compressed representation, complementing the description of the network topology in existing (exchange) formats for neural networks. It establishes a toolbox of compression methods, specifying (where applicable) the resulting elements of the compressed bitstream. Most of these tools can be applied to the compression of entire neural networks, and some of them can also be applied to the compression of differential updates of neural networks with respect to a base network. Such differential updates are for example useful when models are redistributed after fine-tuning or transfer learning, or when providing versions of a neural network with different compression ratios. 
This document does not specify a complete protocol for the transmission of neural networks, but focuses on compression of network parameters. Only the syntax format, semantics, associated decoding process requirements, parameter sparsification, parameter transformation methods, parameter quantization, entropy coding method and integration/signalling within existing exchange formats are specified, while other matters such as pre-processing, system signalling and multiplexing, data loss recovery and post-processing are considered to be outside the scope of this document. Additionally, the internal processing steps performed within a decoder are also considered to be outside the scope of this document; only the externally observable output behaviour is required to conform to the specifications of this document. © All Rights Reserved ISO

The information about this standard has been compiled by the AI Standards Hub, an initiative dedicated to knowledge sharing, capacity building, research, and international collaboration in the field of AI standards. You can find more information and interactive community features related to this standard by visiting the Hub’s AI standards database here. To access the standard directly, please visit the developing organisation’s website.

About the tool



Tool type(s):




Type of approach:



Usage rights:


Geographical scope:


Modify this tool

Use Cases

There is no use cases for this tool yet.

Would you like to submit a use case for this tool?

If you have used this tool, we would love to know more about your experience.

Add use case
catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.