Catalogue of Tools & Metrics for Trustworthy AI

These tools and metrics are designed to help AI actors develop and use trustworthy AI systems and applications that respect human rights and are fair, transparent, explainable, robust, secure and safe.

Towards inclusive automatic speech recognition



Towards inclusive automatic speech recognition

Practice and recent evidence show that state-of-the-art (SotA) automatic speech recognition (ASR) systems do not perform equally well for all speaker groups. Many factors can cause this bias against different speaker groups. This paper, for the first time, systematically quantifies and finds speech recognition bias against gender, age, regional accents and non-native accents, and investigates the origin of this bias by investigating bias cross-lingually (i.e., Dutch and Mandarin) and for two different SotA ASR architectures (a hybrid DNN-HMM and an attention based end-to-end (E2E) model) through a phoneme error analysis. The results show that only a fraction of the bias can be explained by pronunciation differences between speaker groups, and that in order to mitigate bias, language- and architecture specific solutions need to be found.

About the tool


Objective(s):




Type of approach:


Tags:

  • speech

Modify this tool

Use Cases

There is no use cases for this tool yet.

Would you like to submit a use case for this tool?

If you have used this tool, we would love to know more about your experience.

Add use case
catalogue Logos

Disclaimer: The tools and metrics featured herein are solely those of the originating authors and are not vetted or endorsed by the OECD or its member countries. The Organisation cannot be held responsible for possible issues resulting from the posting of links to third parties' tools and metrics on this catalogue. More on the methodology can be found at https://oecd.ai/catalogue/faq.